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Abstract

ADAD46248

Employing results derived by the author for solutions of an abstract
integrodifferential equation in Hilbert space, we obtain stability and
growth estimates for electric fie4fds in nonconducting material dielectrics.
It is assumed that a linear constitutive equation of Maxwell-Hopkinson

type relates the electric field and the electric displacement field in

the dielectric; specific results for a simple memory function of exponen-

tial type are given.
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Let (xl,t), i=1,2,3, denote a Lorentz reference frame where . (x%)
represent rectangular Cartesian coordinates and t is the time parameter;

in this frame of reference the local forms of Maxwell's equations are

%% # curl E = 0, div B = O (1.1a)
3D _ : )
curl H - === 0, divD =0 (1.1b)

provided that the density of free current JF’ and the magnetization

~

are each equal to the zero vector and the density of free charge QF 0.

In (1.l1la) and (1.1b) B is, of course, the magnetic flux density, while
E, H, and D represent the electric field, magnetic intensity, and
electric displacement vectors, respectively.

To obtain a determinate system of equations for the fields ap-
pearing in (1.1) it is also necessary to append certain constitutive
equations, the form of such relations being dependent on the nature of
the material in which the electric and magnetic fields occur. For ex-

ample, in a vacuum we have the classical constitutive relations

Tl (1.2)

where €55 My are fundamental constants satisfying €y © c-z, c being
the speed of light in a vacuum. The next simplest kind of material in
which (E,B) may occur is a rigid, linear, stationary non-conducting di-

electric whose constitutive relations, viz.,

D=g¢*E B=u-H (1.3)
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were given by Maxwell [1] in 1873; in (1.3) ¢,y are constant second
order tensors which are proportional to the identity tensor if the
material is isotropic. As pointed out by Toupin and Rivlin (2] the
relations (1.3) do not account for the observed absorbtion and disper-
sion of electromagnetic waves in non-conductors.

In 1877 Hopkinson [3], in connection with his studies on the resi-
dual charge of the Leyden jar (and following a suggestion of Maxwell),
proposed a constitutive equation for the electric displacement in a

non-conducting dielectric of the form
D(t) = eE(t) + [T _o(t-TIE(T)AT (1.4)

where € > 0 and ¢(t), t 2 0, is a decreasing functions of t which is
continuous for 0 < t < ». As indicated in (2] Hopkinson was able to
correlate his data on the residual charge of Leyden jars by miking
suitable adjustments of the memory function ¢(t); for ir , he points
out in [3] that a suitable memory function for glass would oe a linear
combination of exponentials with the coefficients in the expansion being
dependent upon the silica composition of the material.

We shall be concerned in this paper with the growth behavior of
electric fields which occur in non-conducting material dielectrics
that are governed by the constitutive hypothesis (1.4); following Davis
(4] we append to the system consisting of (1.1) and (1.4) the relation

H=yu B u>0 (1.5)

Results concerning continuous dependence of the electric field on per-
turbations o: the memory function ¢, etc, may be obtained via a suitable

interpretaticn of the abstract results contained in [§].




2. Growth Estimates for an Abstract Integrodifferential Equation

in Hilbert Space

Throughout the remainder of this paper we deal with the constitu-
tive relations (1.4), (1.5) and assume, for the sake of convenience,
that E(t) = 0 for t < 0. Then, as indicated in [4], we may solve (1.4)

for E(t) by the usual technique of successive approximations and we get

E(t) = D) + 1 [ett-1)D(1)dr (2.1)
where
o(t) = §  (-1"™ (1) (2.2)
n=1
sreey = e tele) (2.3)
(L) = [§¢l(t-r)¢n'1<r)dr, n = 2. (2.4)

Because of the assumed continuity of ¢(t), 0 s t < =, ¢(t) will be in
C[0,T) if the series in (2.2) converges uniformly for 0 s t < T < o3
such uniform convergence will be postulated in the next section where

we obtain upper and lower bounds for sup [¢(t)| and sup li(t)l'in terms
(o,T) (o,T)

of sup |¢(t)]| and sup |$(t)].
[10,T) fo,T)

The following simple observation is essential.

Lemma I (Davis [4]) In any non-conducting material dielectric for
which (1.4), (1.5) are valid, and E(t) = 0, t < 0, the electric field

and the electric displacement field satisfy

-1
® =
(€E + ¢*E),, = W= AF (2.5)




" =i
euD,, = AD + **AD (2.6)
where
($*A); (x,1) = [Toct-TIA; (x,T)dT | 2.7)
and for any vector field A
AA = grad(div A) - curl curl A (2.8)

Proof By virtue of (1.1b), (2.1), (2.2) - (2.4) and the spatial inde-

pendence of ¢(t),

AE = - curl curl E (2.9)
But
curl E = - B, = - uwH, (2.10)

by virtue of Maxwell's first equation (1l.la) and our constitutive

hypothesis (1.5). Thus

AE = pleurl H) = u(curl H) = D o (2.11)

in view of (1.1b). The integrodifferential equation for E(t), i.e.,
(2.5) now follows from direct substitution of (1.4%) into (2.11) while
(2.6), the integrodifferential equation which governs the evolution of
D(t), follows via direct substitution of (2.1) into (2.11).

Our goal in the present work is to derive stability and growth
esfimates for solutions E(x,t), D(x,t) to (2.5) and (2.6) respectively
where we assume that (x,t) € @ x (0,T) with Q ¢ R3 a bounded region
with smooth boundary 9Q and T > 0 a finite real number. We assume also

that the electric field and the electric displacement field satisfy

initial data of the form




=6
E(x,0) = go(g), gt(g,O) = gl(g) (2.12)
for all x € 2, where go""’gl are continuous functions on R, and
homogeneous boundary data of the form
E(x,t) = D{x,t) = 0, (x,t) ¢ 3@ x L[0,T). (2.14)

In order to obtain the desired growth estimates for the systems
consisting of (2.5), (2.12), (2.14%a) and (2.6), (2.13), (2.14b), re-
spectively, we first convert these initial-boundary value problems into
initial value problems for abstract integrodifferential equations in

(1) (9]

an appropriate Hilbert space setting. Following Dafermos
we denote by H, H, real Hilbert spaces with H, dense in H and H+ < H
algebraically and topologically. The inner products on H, H, are

denoted by <,> and <,>,, respectively. Let H_ denote the dual of H+

+

via the inner product of H, i.e., H_ is the completion of H under the norm

[ <y,u>|
| lwl|_ = sup ——— (2.15)
vel, [y,
and let LS(H+,H_) be the space of symmetric bounded linear operators

from H, into H_. The abstract initial value problem we shall employ

in this paper then has the form

u., - Nu+ [EK(t-Tulr)dt = g, 0 s t < T (2.16)

ul0) = £, u (0) = g (2.17)

3

(1) Sufficient conditions for the asymptotic stability of the fields
E(t), D(t) may be deduced from Dafermos' work [9].

TR —
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gér) = 0, == < T < 0 ' (2.18)

where v GO = H+, f.g € H+ and
(i) N e LgH,, H)
(11)  KCtd, K (1) € LECC-=,m)5 Lg(H,,H )

with K¢ denoting the strong operator derivative of K. Now set

N = {w e c?(r0,T); H,) | sup)llg(t)ll+ < N}, (2.19)
L

3

for some arbitrary real number N. Then the following specialization
of a result due to Bloom [6] applies to any solution u € CZ(EO,T); H+)

of (2.16) - (2.18) for which y, e C*([0,T); H,) and y,, € CCLO,T); H_):

e
Proposition I Let y € N be any solution of (2.16) - (2.18) and set

Feo) = |Jul) ]2 + plert )%, 0 <t < T (2.20)

where B8, to are nonnegative real numbers. If K(t) satisfies

- <v,K(Q)v> 2 KH!HE, Vz e H, £2.21)
with
k 2 YT sup ||}§t(t)||“H H )(2) (2.22)
[OQT) +’ S
then for all t, 0 s t < T, F(t) satisfies
< FCOE"(E) = [F' ()12 2 -2F(£)(26(0) + B) (2.23)
where
G(t) = ECt) + 6sup ||Kt)]] (3) (2.24)
L(H,,H_) :

(o,T)
(2) y is the embedding constant, i.e., as H, < H topologically,
Iyl < yivil,s v € H , where, for the sake of convenience we
will assum @ fo be such that 0 < y < 1; the reader can easy modify
the ensuirg analysis for the case where y > 0.

(3) 6 = L1yrn“
2




and

ECt) = <, (t), u (£)> - F<u(t), Nu(t)> (2.25)

t
Remarks The proof of proposition I, stated above, is given in (6] and
proceeds via a logarithmic convexity argument due to Knops and Payne

(10] for the special case in which K(t) = 0, 0 s t < T. As no definiteness
conditions are imposed on the operator N the technique is particulary

well suited to handling certain non-well posed problems. We note in
passing that the reader may easily check that the assumption of zero

past history, i.e. (2.18), allows us to replace expressions such as

Sup )Ilﬁ(t)llL(H y y which appear in (6], (7], and [8] by supremums
+2°°-

,m

over the finite time interval [0,T). As demonstrated in [6] and [7]
all the growth estimates for the abstract system (2.16) - (2.18), which
we shall employ in this paper, follow directly from the basic estimate
€2.23).

We now recast our initial-boundary.value problem (2.6), (2.13),
(2.14b) for D(x,t) into an initial-value problem of the form (2.16) - (2.18)
as follows:(“)
Let C:(Q) denote the set of three dimensional vector fields wifh com-
pact support in Q whose components .are in 613 Following Dafermos

(8] we define H to be the completion of €c”(Q) under the norm induced by
o

the inner product

<v,w>h = fov.w. dx (2.286)

and take H, to be completion of C:(Q) under the norm induced by the

(4) the argun:nt follows the same pattern as that employed in [6]
and [7] f » the equations of motion -for a three dimensional isothermal
linear viscoelastic material.




inner product

<v ’E>;i =
+

~

Finally, H_ is defined

el

Operators N ¢ %}H+, H_

as follows

an

(K(t)w) .
1

i
i 8y
3 J
to be the completion of C:(Q) under the norm
sup []<v,w>o|/]|w| |5 2 (2.28)
geH+ =

) and K(t) € LZC(—m,m); %§H+,H_)) are now defined

2

1 9 Wy P
o 6ik6j1 SO ,VY‘J, € H+ (2.29)
bt wAL
SCON, W, Ve H. (2.30)

~ ~ ~ ~

With these definitions of H, H_ , H_ and the operators N, K, the

system consisting of (2.6), (2.13), and (2.14b) assumes the form

Ret

1z >

D

D(0)

D(t)

for 0 < t < T, where

delineate the form which the conditions expressed by (2.21) and (2.22)

assume in the present

In terms of our definitions of H and H+, (2.21) assumes the form

-vai(

e

+ [T k(t-1)D(r)dT = Q (2.31)
D> B,(0) = D, (2,32)
0, -®<T<0 (2.33)

D:(0,T) + H,, Dy» Ry € H,. We now seek to

1

situation.

~ V. V. ~
KCO)ylidx 2 « [o 55 g %> ¥ € Hy  (2.38)
- Bl

——
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or, in view of (2.30),
®(0) 32Vk Ay vy
< e — ——— o .
o dgteSen Yy = = dx = « [g 3%, 3% f% il

Integration of the expression on the left-hand side of (2.35) by parts,
and an application of the divergence theorem, in conjunction with the

(5)

fact that the vector field y vanishes on 38, Vv € H+, yields the

result that (2.35) is equivalent to
®(0) s - Kep. (2.36)
Note, however, that the hypotheses of proposition I, i.e. (2.22) also

require that

k 2 yT *sup IIE b o SRR i {2.37)

A simple computation, however, yields

! £ ~ = I »
,<z,5t(t)g>ﬂl —IIQ vi[gt(t)g]idgl . (2.38)
2
C 9 v.
_ e
= e IIQGiijl Vi 3w 0%, dﬁl

. . OV.
_et) ol i
e R

oV
. 0% =
| d

LIS TRNTMTE:
€y X H+

-
A

for all v e H+, where we have again made use of the fact that v vanishes
on 9. However, by virtue of the Schwarz inequality and the definitions
of H, H+

(5) This resu t follows via a standard trace theorem; I am indebted to
Prof. S. Antman for this observation.




0=

l<y,K (Ow>nl s Tyl IgHE oxllg (2.39)
s HEO g a3
t L +

for all v € H,, since ||v]||a s yv|lvlla » Vv € H,, and we are assuming
~ + St H+ ~ +

that v ¢ (0,1). Therefore,

e |6¢t)|/en, Yt e L0, (2.40)

implying that (2.36) is to be restricted by the condition

« 2 XX sup |d(t)| (2.41)
¥ [o0,T)

Clearly (2.36), (2.41) are simultaneously satisfied if ¢(t), 0 < t < T,

satisfies

$(0) < -yT sup |®(t)]| (2.42)

LD,T)
a condition to which we shall frequently return in the following sections.
In view of proposition I, and the discussion above, we have already

established the following result:

9d 4 1/2 2

; ~ ad.
Theorem I Let M = {gecz([O,T); H+)| sup [Iniii - dx] s M7}
(0,T) ] 3

3

for some real number M, and let D ¢ M be any solution of (2.8), (2.13),

-

(2.14b). If ¢(t) satisfies (2.42) then

H 2
F(t3B,t ) = [oD, (x,t)D, (x,t)dx + B(t+t )%, 0 <t < T,

with B, By nonnegative real numbers, satisfies




" S ———
a1
FE" - F'2 » -2F(26(0) + B), 0 st < T (2.43)
where
X 8D, (e, t) 9D, Cx.t)
--]; l"’, l"",

6t) = 3/g e 5T dx (2.44)

1 BDi(g,t) aDi(x,t) 6 | )|
% dx + — sup [&(t

2¢p’Q ij axj €y (0,T)

Remarks Whereas we have written Theorem I out in some detail, we shall,

for the most part, adhere to the Hilbert space notation in the remainder

of the paper.

Remark The most important thing to point out, at this stage of our
analysis, is that although we may easily rewrite the integrodifferential

equation (2.5) is the form,

m |

1 5 1 gt = _ _ $€0)
| G4+ TIE *e fo ¢ (E-DE(TIAT = — E (),  (2.48)

when E(t) = 0, t < 0, in order to be able to recast (2.45) in the
Hilbert space setting already constructed we must have ¢(0) = 0; in
this case we may rewrite the system consisting of (2.5), (2.12), and

(2.14%a) in the form

% *

Bee ~HE? ffm K (t-1t)E(t)dt = 0 (2.46)
EC0) = E_» E.(0) = E; (2.47)
E(t) = 0, -» <1 <0 (2.48)

where E:[0,T) + H,, §0, El ¢ Hy. The appropriate forms of the operators




=19

x *
N , K (t) appearing in (2.46) are

~

2
o w
& = kL Sap
QR = 060084 B 0%, | S 11¥ic? el
o, = 22 yene (2.50)
XK (W), = = ;;7 ¢ 29" ‘

where W e é+. It would than be possible to carry over most of the
stability and growth estimates derived in [6] and [7] to the system
(2.46) - (2.48). However, many experimental studies, including those
of Hopkinson [3], indicate that suitable memory functions for various
kinds of dielectrics, which are compatible with the basic constitutive
equation (1.4), do not satisfy the condition that ¢(0) = 0. In parti-
cular, we have already mentioned Hopkinson's experimental attempts

to verify a linear combination of exponential functions as being a
reasonable memory function for glass and in this paper we shall be
interested in applying some of our growth and stability estimates to
the simple case where ¢(t) = &, Our approach to the derivation of
growth and stability estimates for the electric field E(x,t) shall,
therefore, be routed through the system (2.31) - (2.33). The fesults
contained in [6] and [7] do yield growth and stability estimates for
the electric displacement field D(x,t); some corresponding theorems for
the electric field may then be obtained by using the consitutive re-
lations (1.4) and (2.1) and various estimates on the kernel functions
which follow from (2.2) - (2.4) and which are derived in the next

section.
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3. Upper and Lower Bounds for sup |[¢(t)]| and sup 1d(t) |
[£0,T) (o,T)

Our first result in this section is the following

vemma 1T  Let ¢(t) e Cl[O,T) and assume that (2.2),and the
series which is obtained from (2.2) by term by term differenti-

tion,are both uniformly convergent, 0 < t < T. Then provided

sup |1¢(t)] < €/T we have

L0.T)
(a) sup |®(t)| s a(T) €3.1)
[G,T)
sup [¢C(t)|
: .ol [0,T)
(b) ?SPT)l¢(t)' S 5 (GaL sup)l¢?t)|) (3229
? L0 E

where a(T) = sup [¢(t)|/(e-T sup |¢(t)])
(o,T) £o,T)

Proof From (2.2)

JoeEIl = 3 MTeEs 0e e« T (3.3)
n=1

But from (2.3) and (2.4) we have, for n 2 2,

o7 (t)

LT (t-0¢" M (r)dr, 0 s t < T (3.4)
(3

n

o™t)] <« Tsup e Isup 16" (D). (3.5)

¢ [0,T) [0,T)

Since (3.5) is valid for all t, 0 s t < T,

. \-'m/.j




==

sup 1¢" (1)1 s sup 1¢(t)Isup 16" () (3.6)
(0,T) = [ [0.T)

IA

Successive application of the recursion formula (3.6) then

yields
sup 16"l < (Tsup (o)™ sup 1odct) (3.7)
(0,T) SR, [0,T)

= 2 sup 10) D™ sup Te(t)]

[(0,T) [0,T)
n-1
=X __ (sup 14D
en [o,T)

Therefore, from (3.3) we have

° ool n
(L)l < ] (sup 1)), 0 £t < T (3.8)
n=1 " )t
or
il > i n
1o (t)| si; Z (? sup l¢(t){) , 0 s t < T. (3.9)
n=1 L0, T)

From our assumption that sup [¢(t)]| < % it follows that
(0,T)
the geometric series on the right-hand side of (3.9) con-

verges and, in fact, we have

P ?up ¢ (t)]
1 0,T) X
[o(t)| < T(E-T ;Up ‘¢(t)T) = a(T) (3.10)
. £0,T)

for all t, 0 € t < T, so that part (a) of Lemma II follows
by taking the supremum over [0,T) in (3.10). 1In order to

prove part (b) of the lemma we beginning by noting that




Y
our hypotheses imply that
18¢t)t < § 147¢Cexl, 0 s t < T, (3.11)
n=1
However,
§ ey = %-d/dt fg o(t-1)" L(rar (3.12)

- ¢C0)

€

R b, (t-1)6" " (1)ar

for 0 < t < T. Therefore,

A

169ty < o116 )1 + T sup 14C1)Isup 167 L) (3.13)
s €19, T) [0,T)

< Le)) + Tsup 18D Dsup 1" )|
¥ (0,T) (0,T)

But, from the recursion formula (3.73)

n-2
sup_ 10" 1)1« T (sup_ eI DM (3.18)

E@T) € [0,T)
so that

. ® n"2 =
(B ey) « LIeCEY] & T sup  THATI) e Gaup WMLOIITY 43,183
(0,T) S N

Substitution of (3.15) in (3.11) yields

™ n-2

16¢t) ] < (16€0)| + T sup 1dC)D § I (sup 16(DID™ Y (3.16)
[0,T) el 5 | [0E)

for 0 < t < T, or, replacing |4(0)| by sup |¢(t)]|
{0,T)




=8~

sup |¢(Tt)}{ + T sup l&(r)l) w [T Sup |¢(T)|n
L 0,T) 04T 0,T)
18 (t) | <% ] I et
T sup [¢C1)] n=l
[(0,T)
sup I&(T)I T sup l¢(1)]
<ty (0,T) . {0,T)
sup [o(T) F(e-T sup 1¢(TOD

as we have assumed sup ([¢(T)| < €/T. Therefore,

[0 T)
sup ()|
ioeent = SE gy ¢ o L E )
S sup J¢(1t)[”?
[O,T)

for 0 £ t < T, and the desired result follows by taking the

supremum on the left-hand side of (3.19).

Remarks We note here, in passing, an alternative method of
deriving the results contained in Lemma II. We begin by
multiplying (2.4) through by (-1)" and summing over n,

2 < n < o, to get

] -1 (1) 1d1
=2

I 0% = [T et t-1iL

n=2 n

where we have used our assumption of uniform convergence to
interchange the integration and summation operations. But

by (2.2) and (2.3)

D"ty = o(t) + % o(t)
2

ne-— 8

n

so (3.20. may be recast in the form

e TR PP

(3.17)

3097

(3.20)

(3.21)

fo i i i




[ —————————

w3 T
2o + Lo = L tew-nr ] DM hmar (s.22)
n=2
¥ 1 ¢E g
=5 = [ #(t-T)e(t)at
As a direct consequence of (3.222) we have ¢(0) = - % ¢(0).

If we differentiate (3.222) through with respect to t now

we obtain

€d(t) = - $(r) - ¢(Oe(t) ~ [T o (t-TI0(1)dr, (3.23)

a result which will be employed in the proof of Lemma III.
Note that {3.23), in conjunction with ®(0) = - % $(0),
implies that ¢(0) :-% $(0) + l? ¢2(0).

In order to establish pari (a) of Lemma II, we rewrite

(3.222) in the form

_ 1 e e
ety = = = §lEd 5 [o ¢(t-T)e(1)dr (3.24)
Then .
1 1 t
leCt)] < = |¢(t)] + = sup Il¢(r)If  Ie(T)Idr (3.25)
€ € (o]
[0,T) :
< % sup 1¢(T)I(1 + T sup [¢CT)])

(0,T) (0,T)

or, since (3.25) is valid for all t, 0 < t < T,

e sup [9(t)| < sup |¢(t)](1 +# T sup |&(t)|)
[0,T) (0,T) [0,T)

which, in turn, may be rewritten as




=

sup |8(t)i(e -~ T sup [¢Ct)]) s sup Ie(t)]., 0 = £ < T £3.27)
(o,T) (o,T) (0,T)

Finally, as w~ are assuming that sup |¢(t)| < €/T, we may
£0,T)

¢ivide both =:. s of (3.27) through by ¢ - T sup [¢(t)]| to
[0,

obtain the desired result; the result contained in part (b)
of Lemma II may be obtained from (3.23) in an analogous
manner.

Our next lemma gives lower bounds for sup [®(t)| and

(o,T)
sup |6(t)| in terms of sup |¢(t)] and sup Ié(t)l.
[0,T) (0,T) (0,T)

Lemma III Under the conditions which prevail in Lemma II

(a) sup |19¢(t)]| 2 sup I¢(t)l/xT (3.28)
[0,T) [0,T)
where x. = ¢ + T sup |¢(t)|. If, additionally,
= (0,T)
sup [$(t)] 2 16€0)[2%/Ce=TI6C0) 1) (3.29)
{o,T)
S sup () 1(e=TI6C0) 1) = 16(0) 1
(b) sup [6(t)] 2 L9, 1) 5 5 -
[0,T) 2 "theT "sup HIBICEY
L0

Proof 1In order to prove part (a) recall that by virtue

of (3.222)

p(t) = - ed(t) - IE ¢(t-1)¢(1)dt, 0 < t < T (3.30)
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so that

1o (L) |

A

ele(t)| + sup 16T [5 [ea)1ax (3.31)
(0,T) ©

A

eld(t)| + T sup I¢(1t)|sup [¢(1)]
(o,T) o,T)

IA

(e + T sup J¢p(1t)|)sup [&(1)]
{(0.,T) ° (0,T)

Xy SUp [oCT)|.
£, T)

Therefore, taking the supremum over [0,T) in (3.3lq) we get

sup [¢(t)| = X SUP [d(t)| (3.32)
[8,T) (0,T)

and as ., > 0 the desired result follows immediately. We
now assume that in addition to the other hypotheses of
Lemma II, the estimate (3.29) also holds. If we solve (3.23)

for & we obviously get

$(r) = = cb(t) - $(0)e(t) - [T ¢ (t-T)0(T)dT 1(3.33)
roy all ts 0@ s € < T. Thus,

16(t)] < €]d(t)| + (]6C0)| + T sup IéCt)Msup [oCT)| (3.34)
FOsLY) EO5T)

However, 0(t) = [L &(1)dt + 6(0), so

L T e R
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18CEY] < T sup IBLTY] # = [e€0)]
[0,T) =

where we have made use of the relation between ¢(0) and

${(0). Since (3.352) holds for 0 < t < T, we have

sup 19CT)| < T sup [dC)| + L |4(0)]
(0,T) (0,T) &

and substitution of this result into (3.34) yields

10Ct)] < eld(t)] + ([¢C0)] + T sup (1))
[0,T)

X

(T sup Btk * = [eCEYD
[0, T) g

A

sup 1d(t) | (e + T[19(0)| + T sup l&(T)IJ)

0,T) [0.T)
+ L 00011600 + T sup 1$CD1)
u [6,7)

Taking the supremum over [0,T) on the left-hand side of

(3.372), and rearranging terms, we get

sup 18¢t)1Q1-Z1000d ) - L oc0))?
I-O’T) € € :
- < sup |o(t)]
e + T(|¢C0)| + T sup 1¢o(1)|) [0,T)
[0,T)

-

Note that our requirement that sup [¢(1)| < €/T implies
e,

that the coefficient of sup Ié(t)t, in the numerator of the
[0,T)
expression on the left-hand side of (3.38), is positive (as

is the umerator itself in view of (3.29)). Therefore

(:3.36)

£3.37)

(3.38)




5

-2]1-

! sep  IBCEN e = T JeCOX1) =  1HL0Y]°
sup [(e(t)| =2 [0,T) -
(0.T)

e® + Tle(0)] + eT° sup [HCT)
(o,T)

sup 1$(t)|Ce - TI6C0)I) - 16(0)]°
[0,T)

Ae” & e0° sun 18R
4 (0.T)

£3.39)

where we have used the fact that TI¢(0)| < e¢. This establishes

part (b) of the lemma.

Example In order to examine the implications of Lemmas II
-t

and III we consider the simple example ¢(t) = e ,
0 <t < T, and denote the corresponding ¢ as ¢(T1; e 5y,
Since sup [¢(t)| = 1, the condition that sup [¢(t)]| < /T

LO,T) (o,T)

is equivalent to the condition that T < e; if this simple

inequality is satisfied then part (a) of Lemma II implies

that
sup 16(t; e )| s ET § T ee
0<7<T :
Clearly, sup 1$C(t)] = 1, so part (b) of Lemma II yields
(o,T)
sup [8(1; e )| < TTlS%T yow
*0<s1<T s

Turning now to Lemma III we again require that T < e€; part

(a) then yields the lower bound

t

suj |0(t; e

O0sT«1i

(3.40)

(3.41)

s S 5




while for part (b) of Lemma III we must require that (3.29) be satisfied,
i.e., that ¢ = T > 1. We then have the lower bound

sup lé(r; e_t)f 2

2 l < e - T. (3-143)
0<T<T 2¢ + €T '

2 5
Clearly (3.43) requires that € > 1; in addition, there is obviously no
need to also specify that T < e since this is automatically satisfied

whenever the condition implying the validity of the estimate in (3.43) 1is.

=t

Remark In the example considered above, i.e., ¢(t) = e ~, the condition
expressed by (2.42) becomes
) _ 1 . -t
== §l0) = = = 3 = {F sup |®Ct,e )| (3.44)
Gst<t
However, from (3.41) we have sup lé(r'e_t)l gt if T < e
2 0<t<T 2 T(e-T) ° i
Thus (3.44) will be satisfied if -
1 (1+T) _ YC1%T) (3.45)

Pl L ) S

and simple manipulation shows that (3.45) is equivalent to

Ts S ot s e (v e 0,1)) (3.46)

4. Growth Theorems for Electric Fields in Nonconducting Material

Dielectrics

Our first result, is based upon the following specialization of a

theorem obtained in [6] for the abstract system (2.16) - (2.18):




a8

Proposition II: Let u ¢ N be any solution of (2.16) - (2.18) for which

E(0) < -k for some k > 0. If K(t) satisfies (2.21), (2.22) and

sup ||K(t)|] < k/6 (4.1)
0.7) L(H,,H_)

then, provided <f,g> > 0,
et [12 2 [[£]]? expl<2g,g>t/[[£]1%), 0 5 t < T. (4.2)

In view of the identification which we have already made between
the abstract system (2.16) - (2.18) and the initial~-boundary value

problem (2.6), (2.13), (2.14b), we can immediately state

Theorem II Let D ¢ M be any solution of (2.6), (2.13), (2.14b) with

the class M as defined in Theorem I, §2, and suppose that ¢(t) satisfies

¢z2.42). [Ef
2 ~
| ~ o
"Ql”H - <D_» ND>j S - 2k (4.3a)
for some k > 0 and
sup |®(t)| s euk/® (4.3b)
0,T)

then, provided <90’91>§ > 0,

‘ 2 2 A ¥
el 2 RPIRE: exp{<220,D1>Ht/|]Qollﬁ}, 0 £+ < T (N.8)

In order to obtain the corresponding growth theorem for solutions
of the initial boundary value problem (2.5), (2.12), (2.l14a) we proceed

as follows: frcm the constitutive equation of Hopkinson, i.e. (1.4),




e
and the assumption that E(t) = 0, - < 1 < 0, we have for 0 < t < T
1 ~ - A t ~
IR ] | = el B[] + [lett-T)] HE() | [[dT (4.5)
< ellE@lg + sup [eo|[glEED] |5dn
0,
< xp sup | |ECD]IG

Now, directly from (2.1) we have

and

ECt) = %é(t) +

from which (as ¢(0) =

Therefore, condition (

HE; .

On the other hand, (2.

in view of the stated

Suppose now that ¢(t)

(2.2) and the derived
term differentiation,

direct consequ.nce of

B, ° & (4.6)
20ffe (t-1)D(TIAT + 0(OID(T)] (4.7)

1 : .
- §¢(0)) we easily obtain

D, = (g, + 2 g ) (4.8)

4.3a) is equivalent to

« € NE 5% € <2k/ed, k 5 O (4.9)
Ne ae

2 A
~o''H H

42) is equivalent to

$(0) = eyT sup |&(t)]| (4.10)
[O,T)

relation between the initial values of ¢ and ¢.

e clro,T), that sup [¢(t)| < /T and that both
o

series, which is obtained from (2.2) via term by
are uniformly convergent, 0 < t < T. Then, as a

Lemma IIb, (4.10) will be satisfied if

FPOP I —




-25- p

sup Ié(t)l
£0,F)
sup [¢(t)]
[0,T)

3

$(0) 2 eya(T)QQ + T ) (Leian)

Under the same conditions stated above, it follows from Lemma IIa that
(4.3b) will be satisfied if
a(T) < epk/86 (4.12)

In view of Theorem II, and the above discussion, we may state our

first growth estimate for the electric field, viz.,

Corollary I Let E ¢ M be any solution of (2.5), (2.12), (2.14a),

and suppose that the hypotheses of Lemma II are satisfied. If

(i) the initial data go, E. satisfy (4.9) for some k > O,

1
(ii)y ¢Ct) satisfies (u.11) and (4.312)

(0) 2 ~
B *+ <EsEp>q > O

Ciii) H

then for all t, 0 < t < T,

sup [1ECO)] 15

& | ~
—1E |l exp (4.16)
0,T) Xp "o 'H :

Example Consider the simple case ¢(t) = e °. We have already seen

in §3 that a(T) = elT , sup |¢C1)| < /T if and only if T < ¢, and that
i [(0,T)

s
(2.42) is satisfied if T s e(l-y)/(ey + 1); this latter condition is of
course, equivalent to (4.11) in this case. If we use the definition

of 8, it is a simple matter to show that (4.12) is satisfied if and only
3k T = 52¢/(1 + €Y), where y = 2uk/7N“. We may, therefore, specialize

Corollary I, a: follows: Let E ¢ M be any solution of (2.5), (2.12)
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(2.1%a) with ¢(t) = e Ef
s g o+ L 2 _ <E NESS s - 2k/e?, K> 0  (4.1%)
(l ) il&l + : Jol‘H - ~O’ggo>ﬂ = g k SNy sk
(ii") PRGN (4.15)
i3 T < min{ 57 > Trey o0 ¥ 5 2uk/y .
(1ii') B & > -e<E_+Ey%1 (4.16)
then for all t, 0 = & < T,
<§o’gl if % Eo>ﬁt
sup |[ECO|[] 2 <€§T)|[go||ﬁ exp 5 (4.17)
,T) JIES G

Our next set of

specialization of a t

T

Proposition III Let

E) = - X, for some

If K(t) satisfies (2.

sup
0,
then for all t, 0 s ¢
2 2
a7 2 C]1£]]
provided
12 =

growth estimates is based upon the following

heorem derived in [6]:

u € N be any solution of (2.16) - (2.18) for which
k > 0 and suppose that the initial data satisfy

<f,g> 2 Y2G(0) ||f]]| (4.18)
21), (2.22) and, in addition,
|l5t(t)||L(H+;H_) > k/8T, (4.19)
< -k
<2f,g>
+ EE%QLJ cosh At + [__A ~—] sinhAt - uF§0) (4.20)
A A
<2f,g>
“5)2 86¢0) 4 o, (4.21)
HEl £l




L I

If Xz = 0, then under the conditions stated above

a2 = [1£11% + 2/26C0) |1gllt + 26¢00t%, 0 s t < T (4.22)

In view of the indentification which has been established between
the system (2.16) - (2.18) and the initial-boundary value problem

(2.6), (2.13), and (2.14b) we have

Theorem III Let D ¢ M be any solution of (2.6), (2.13), (2.14b) and

suppose that ¢(t) satisfies (2.42). Suppose, also, that the initial

data Qo’ D, satisfy

1
(124 {{n - <D ,Ngo>ﬁ > - 2k, (4%.23)
for some k > 0 and €&
<D, »D1>] > V/23C0) [[D s (4.24a)
Geo) = u¢| D113 - <B,.ND>3) * & sup e(r)] . (h.2uD)
s T o
If
sup |®Ct)| > Ken/8T (4.25)

(0,T)

then fopr all £, 0 s t < 1T,

. 2 uG(O 2
lRCe)| 15 2 [llgollg .. =2 30891 cosh At (4.26)

<20 D ~ X
'0'<—~—-————1 H> sinh At - _____l&f(O)
A2

(6) We remark that (2.42) and (4.25) guarantee that G(0) > 0 so that
(4.2%a) makes sense.

>‘)0
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RUIENIE |Ip_| |3 ' ’
~o!'H ~o''H

Hpeo [ 1E 2 1l 1§ + 2/27670Y (IR llg t + 26(0)t2, 0 st < T (4.27)

LN

To obtain from this last theorem two new growth estimates for the
electric field, we will employ the estimate (4.53) and will also assume
that the conditions of Lemma II are satisfied. In addition, as a con-
sequence of Lemma III (b), (4.25) 1is implied by

- : l 2
sup |¢(t)|(e=T|[4C0)[) - [¢C0)|
£0,T)
2(2 + €T“ sup |t
(0,T)

5 }é(t)jz _lQ%QlL;T (4.28b)
(0,7 e-TleCOI] ~ '

Thus there remains only the problem of restating (4.23) and (4.24) in

=
m
=

(4.28a)

@
-

terms of the initial data E, Eg associated with the electric field

and the function ¢(t). To this end we note that in view of (4.6), (4.8),

and Lemma IIa

!
l 2 ¥
: o Y (0) 2 ~ g
E G(0) = =5 (||E, R Ejllg - <Eg>NE>R) + o sup [eCt)|  (4.29)
| s GlE. +90% ¢ |12 - <p  NE>2) + 9T ¢ Ga
T =1 e =~o'lH =0 ’~=o €U 5
For future reference we also note the estimate
- : $80), 112 A
S 2] . - ) ¥ iy . =
6(0) = S5 (||E, *+ HE 1§ = <EooNES>R) * xe [gug)|¢(t)| =6, (u.aoﬂ
b
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which follows directly from Lemma IIIa. In view of (4,29) it is clear
that (4.24a) is implied by

<L +9_(._0_)_E>

i / G .
~o0’=1 € o H lLvollﬂ G2

and it is easy to check that strict inequality in (4.31) implies that

. - "
A > 0. We summarize our results 1in

Corollary I1 Let E ¢ M be any solution of (2.5), (2.12), (2.14%a) and

suppose that the hypotheses of Lemma II are satisfied. If the initial

data go’ E, satisfy (4.33), with G* as given in (4.29), and

1

» £00) 5 112 _ <p LNE >; 2 - 2K/E7, (4.32)

IIE o) o H

il

for some k > 0, while ¢(t) satisfies (4.11), (4.28a), and (u4.28b),

then for all t, 0 < € < T

¢ sup |IE]Ip? 2 ] IB 1§ igigll cosh At (4.33)
EOSTE) Xt A
2 i 4
2e $(0) ~ . _ 4G6(0)
% | ;2 <E,»E, * Y7 Eg ] sinh At % }
where
22 _ o fEocBr * e RPH\ 2 | __86(0) i
. TERE: 2| 1e 1%
~o''H € o''H

If we allow for the possibility that ¢(t) and the initial data

may saticfy A2 = 0, with A defined by (4.34), then we have
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Corollary III Let E ¢ M be any solution of (2.5), (2.12), and (2.14a).

Suppose that the hypotheses of Lemma II are satisfied, that the initial

data satisfy (4.32), for some k > 0, and that

;

<E + iigl E >

~O,~l € o ﬁ 5 € llA (4.35)

If ¢(t) satisfies (h.11), (4.28Ba), and (4.28b), then for all t, 0 s £t < T

(sup |1ECO]ID? 2 HHP B IS + Qe/2GONIE Il t + 26(0)t%}  (4.36)

E6,T) X -
Example We return to our example, i.e. ¢(t) = &b, As we have already
seen, a(T) = E%T’ Xp = e+T, and sup |¢(t)| < €/T if and only if T < €;

£0,T)
the other conditions of Lemma II are, of course, clearly satisfied.

We easily compute that

A* - A* = __E l 2\ - 5 A e

G g = 2 {I lgl % € Eol IH <§O’§§O>H + ue(e_T (L"37a)

FE (g, *+ 2 E 113 - <E.NE>5} + —o (4.37Db)
# 7 82 = 3 1 T € ®ollg 2o0*~%o”H He (e +T) :

Condition (4.31) then assumes the form

i - . V2g% N
By * £ Eofm ¥ M [l G (4.38)

However, the conclusion of Corollary II is valid if (4.31) is replaced

-

by the weaker condition

s (4.39)

(3!

2

o |

<§o’§1 - o>H

(this obviously being sufficient to guarantee that Az 2 0) and as we

_ W—




hd_.,;,m s e S——

=

may proceed directly with the computation of 8(0) in this example, we
shall have no further recourse to (4.38). Before embarking upon the
computation of 6(0) let us recall that ¢(t) = e F witl satisfy (4.11)
if T s e(1l-y)/(ey+1l); also (4.28a) and (4.28b) reduce, in this case to
the simple inequalities

Ku

1—(-6—”—?—’-—~“——>—3 ARl s (4.40)

52(2£+T2)

so that our results are valid only for € > 1. We now compute

sup }®(T;e_t)J under the assumption that € > 1. Directly from the
0<1<T

definition of ¢n(r), n =2, i.e. (2.4), and the fact that ¢1(1) = % e T
n-1
n = ! =T T
¢ (1) = -1 e GIpT > 22 (4.41)
Therefore,
eCt;e” ™) = ¥ (-1)"" (1) (4.42)
n=1
® n-1
SRR T =% B e S
7 c b Z (-1) n-1 (n-1)!
n=2 €
s« %a s w¥ §oay™ L.
. n=1 e"n!
© n
P e‘T(% + Z (";{E) )
n=1 %

2 - e-T(% + [e_‘t/E - X33

where 0 < T < T < ¢ so that |1/¢| < 1. Clearly, we may put this last

result in the form
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L OTRER T SROR 0 SR LTI . (4.43)

€

d(t3e

and the following facts are then easy to verify:

(1) ©(0,e” %) = = 1/¢ < 03 8'(0;e”%) = 2/¢ > 0 (4. k)
(i) Stise™ 51 > B e w0 5 el ~ 1) (4.45)
(iii) ¢'(r;e-t) > 0 <=> %;% > eT/e. (4.46)

In other words, @(T;e-t) is initially negative and increasing and conti-

nues to increase on the interval (0, eln [%%%J), becoming positive for
&
T > @ In [e—l]'
Therefore,
o W " ~
sup |[®(13e )| = max{1l/e; lim|®(t;e )|} (4.47)
0<7<T 7+T
provided we choose
T < e inleia] (4.48)

€e~-1

Set m(e) = € ln[f}%]. A simple computation then shows that

15

liml¢(r;e—t)| < 1/e. In fact if 1lim_¢(t;e” ") < 0, then by virtue of

{6l 1+T
of (4.4¢€) and the monotonicity of ¢ on [0,m(e))
Y

0 > lim_o(t;e" %) > 0(035e” %) = - 1/e (4.49)

T+T
from which it is clear that liml@(r;e-t)l < 1l/e.
T+T

If lim_¢(r;e—t) > 0 then again by virtue of (4.48) and the monotonicity of ¢
+T

0 < lim_6(1;5e” %) < o(n(e)se™ ™) (4.50)
T
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But

-m(e) _ -amle) (4.51)

¢(n(e);e—t) (1-1/€de

e+l -¢
E:T] )

| - exp([1+1/e11n[SF17%)

(1-1/€)exp(1nl

or

t

d(m(e)ze )

Jig retli~€ e+l,-(e+l)
(l-z)(E_l) - (m) € (4.52)

€+l)"l
e-1

]

= (EhTra-d -«
€= . €

a (e+l)-s €e~1

e=1 T eler])

1 e-l)e+l
€ e+l

< l/e.

e-1

T It thus follows directly from (4.47) that

) <1 and

m

\%
)
.

sup |o(t;e”5)] = %. (4.53)
0st<T

Therefore, directly from (4.29) we obtain the value

2

G(0) =g = 5 (||E, +

1
2 1 €

A 0
* ’
H €2U

(4.54)

=z

2
gollH s <Eo, §°>

which is valid when T is restricted by (4.48); the corresponding value
of A2 is now determined via substitution of (4.54) in (4.34), afte~ setting
$(0) = 1. We note in passing, that (4.48) implies that T < e if
¢ > 1 2/Ce=1).
We may sum up the preceding discussion, relative to the example

p(t) = e—t, «c follows: Let E € M be any solution of (2.5), (2.12),
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T

(2.14a) with ¢(t) = e—t and € > 1 and choose T so that

pallag) 1nr£41) (4.55)

T < min e ~

Suppose that the initial data go, El satisfy

[1E; + 2B 113 - <B sNE>j = - 2R/e?, K> 0 (4.56)
<Eos By * %§o>ﬁ >Jz§7‘§o',§ (R20)
with ; defined by (4.54). Then if (4.40) is satisfied
(sup ilg(r)liﬁ)z 2 zﬁ—iﬁ——f (cosh it - 1) (4.58)
(0,T) A" (e+T)
5 (eiT)z (e*1E, 11§ cosn rt + 5%3 <EsEp * ¢ Bo’j sinh At)

for all t, 0 < t < T, where A is given by (4.34) with G(0) = g and

$(0) = 1. On the other hand, if instead of (4.57), the initial data

satisfy
14 a e ¥i8 »
<§o’§l ;i € §O>H e HEO”H (“.‘59)

then for all €, 0 s £ < T

Rig R 1 2 = Sl
(sup ||ECT)|[{)° 2 ?:———- {e llgollé + (2e/2g)||§°||§t + 2gt°}. (4.60)

(0,T) +T) 2

R
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5 tability Estimates for Electric Fields in Non-Conducting

Material Dielectrics

In this section we derive some stability estimates and upper
bounds to complement the growth theorems and lower bounds of the pre-
vious section; our main result is based upon the following specialization,
to he abstract system (2.16) - (2.18), of a stability estimate derived
in [7] and subsequently applied to study the stability of an isothermal

linear viscoelastic body:

Proposition IV. ©Let u ¢ N be any solution of (2.16) - (2.18) and

assume that K(t) satisfies (2.21), (2.22). If

ECO) = —i sup K(t) : £ 2 8 (5.1)
sup 1156 g

b

then for all £ty 0 = € < T

e [1? < atmaxc]£]12, {1gl15H 1228 . (s.2)

where A > 0 is independent of t and § = t/T.

As with our two previous propositions, it can be shown (7] that
this last result is a direct consequence of proposition I. Furthermore,
in view of the established analogy between the initial-boundary value
which governs the evolution of the electric displacement field D(t) and

the abstract system (2.16) - (2.18), we can state

Theorem IV Let D ¢ M be any solution of (2.6), (2.13), (2.14b) and

suppose that ®(t) satisfies (2.42). If the initial data Dy-R; satisfy

A

'y 2 3 ~ -2k
1Dy 115 = <BysNR.>q S =55 sup lect) |, (5.3)
[o,T)
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~

for some k 2 0, then for all t, 0 = t < T

2 2y 2 2,2(1~6)
[Ipced| 13 s AtmaxCl1p, |13, 1121150 (5.4)

A

where A > 0 is independent of t and § = t/T.
In order to obtain the implications of this last theorem for the
behavior of the electric field E(t) we now make use of (2.3,  In faet,

directly from (2.1) we obtain the simple estimates

HEG 15 < Slpeo g + 2 fElete-v] [Ip¢) ] [jdr (5.5)
1 ALt i
s =] Ipe)| |5 + T sup |o(x)|sup ||RC(T)]]
s LT [0,T) H
< (1 + T sup |oCt)|)sup RGO G-
‘ )

FOLT) {0,T
However, provided that the conditions of Theorem IV are satisfied

~ /2 1-1/T (5.6

2 - 2
sup |[DCOY|| < A sup (max(||D |4, 10,1152
(0,%) 5 (0,t) Cidic LG

for all t, 0 < t < T. Recalling now the relations (4.6) and (4.8),
and assuming the validity of Lemma II, we may combine (5.5) and (5.6)

to obtain the estimates

;1/2
lig(t)llﬁ < (1 + T sup |[¢(T)]) (5.7)
2 (0,T)
x sup (2 maxt||E |14, |15, + &2 g |IFDYT
[O,T)
Al/?
< (1 ¢+ TakT))

€
2 (0) 24y1=1/T
x sup (F maxtIEG1IG 5 1By * 25 BolIA1
LU,

e —



T =

for all t, 0 < t < T. There therefore remains for us the simple task
of determining conditions on E_ , E;, and ¢(t) which will ensure the
validity of the various hypotheses of Theorem IV. We have already
established that, granted the validity of Lemma II, the fact that ¢(t)
satisfies (4.11) implies, that ¢(t) satisfies (2.42). Also, the cond-
ition on the initial data, which is expressed by (5.3), is easily seen

to assume the form

)

g, + E8E |12 - <B,NE >; < 2K sup Jet)], k 2 6 (5.8)

e“ul0,T)

But, in view of Lemma II (a), (5.5) is satisfied if

[[El + 20) Eo![é = <§0’N§o>ﬁ < :25%&22 T E W (5.9)
€ ¥

We summarize the preceding discussion as

Corollary IV Let E € M be any solution of (2.5), (2.12), (2.14a) and

suppose that the hypotheses of Lemma II are satisfied. If ¢(t) satisfies

(4.11) and the initial data 50’ E., satisfy (5.9), for some k 2 6, then

&
for all t, 0 = t < T, E(t) satisfies

1=t/

:Ig(t)i}ﬁ s BLT) sup Tk max[ | |E ]lﬁ, llgl + $L0) Eollgl) £5.10} ‘
€ 10, = * :
X Tsup|é(t)]
2172 £0,T) A

where B(T) = A T | and A > 0 is independent of t.

e-T sup |[¢(t)
[o,T)

Example We return again to the simple example ¢(t) = e-t, for which

the hypotheses of Lemma II are satisfied if T < e. In fact, we have

already deter..ined that with T < ¢




-38-

1+e
€

o(t;e”t) = (1 - %)e—T LT

Furthermore, ¢(t) satisfies (4.11) if we choose T < e€(1-y)/(ey+l). As

-

1
e=T

t

a(T) the restriction (5.9), on the initial data, assumes the form

g lmok (5.11)

ueCe-T)

1Z >

| 2
HEl * EOHQ i <EO’ ”

m |-

Eo H

~

with k 2 6. A particularly simple and elegant stability estimate now
appears in the special case where El = 0: Let E € M be any solution
of (2.5), (2.12), (2.14a) with ¢(t) = et and T < eli=-y)/Ceytl). 1If

El = 0 and E_ satisfies
~ ~ o)

2 N Py A ~
HELII = €?<EsNE_>f s - 2k/ne(e-T), k 2 0 (5.12)

there exists A > 0 (independent of t) such that for all t € [0,T)

oy
HEO R < &2 sup)ce||gol|ﬁ>2‘l“’“ be ® 13  (6:13)
POE £

<1) (5.14)

Our other stability estimate is also a consequence of a specialization,

to the abstract system (2.16) - (2{18), of a result derived in [7], namely

Proposition V Let u e¢ N be any solution of (2.16) - (2.18). Assume

that K(t) satisfies (2.21), (2.22) and that €(0) 2 - k for some k 2 0. If

(i) sup ||K. (22 ]] > k/6YT (5.15a)
TR L(H, ,H_)

b




Sogs

1lim
T

Gi) 1gn(] (|2 + slree %) = 0,

T

for 8, t_ nonnegative constants satisfying Btg

|12 s vee T8 [1E11%, ost < (5.
where W(to;T;é) = 2(T/tO + l)2+(S with § = Qi%l'

From Proposition V we immediately deduce

Theorem V Let D ¢ M be any solution of (2.6), (2.13), (2.14b). Assume
that ¢(t) satisfies (2.42) and that
2 & = e
[[gllgg - <D_»>ND >3 2 - 2k (5.17)
for some k » 0. If
(i) sup |8(t)| = euk/6YT (5.18)
3
< 3 PR ¢ 2 2
(i1) 1lim 7 In{[|D(T)}|f + B(T + t)"}= O, (5.19) :
T ¥ °
for B, t_ nonnegative constants satisfying Btg < l|90|‘%’ then
[DCt) |12 < ¥Ct sT38)[ID [|A > Ot <T (5.20)
e H ™ - S ~o!1f g 1
~ ; .A " ' 2+6 .
where ¥(t_3;T;6) = 2(T/to + 1) with 1
& SRy il 2 A w08
§ = AR 7§[|'QIIIH = <QO’N20>H $ eu[gug)lé(T)ll
bl

In order to deduce some implications of Theorem V for the growth

behavior of the electric field, we proceed as follows:

(2.42) is agai:

(5.15b)

s |1£]1?%, then

implied by (4.11) (if the conditions guaranteeing the

First of all,

16)

¥ T TR S AR 0
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validity of Lemma II are satisfied) and the restriction (5.17), on the

initial data, clearly assumes the equivalent form

Ilgl v =0

& -~ e 2
- <E,sNE >y 2 - 2kiey . {6.21)

oM

with k > 0. If, in addition to the hypotheses of Lemma II, we know
that ¢(t) satisfies (3.29), then it follows from Lemma III (b) that

(5.18) is implied by the inequality

(sup [¢¢t) | (e = T|9COI|) - |¢(0)i2
@) )Y
- - > ‘ (5.22)
€22 + 77 sup |o(t)]) Uik
0,T)

As the natural logarithm is monotonically increasing and (by virtue of (4.8))

[IDCTY | |5 = 1im_[[DCT)| |5 s sup |IDCD)|IS s X sup [|ECT] ] (5.23)
H o 37 H "ro,T) H 0, H?

it is clear that (5.19) will be satisfied if-

i 2 2
lim ln{x%(czug)llg(T)llH) + B(T + t )7} = 0 (5.24)

T—>oo
with B8, to nonnegative constants satisfying

2 2
B(t /) s |[E.II (5.25)
Finally, we.note that, in view of Lemma II(a)

s . ES, $(6) o X 2BNlT)
6 5 6% = S=|[E, + =2 B IIf - <EosNEh * -—————(au 3 L5263

Combining our results with the estimates (5.20) and (5.53) yields

Corollary V Le: E e M be any solution of (2.5), (2.12), (2.1lu4a). Suppose

that the hypot! ses of Lemma II are satisfied and that ¢ satisfies (2.42)




i

and (5.18). If the initial data satisfy (5.21),with x 2 0,and (5.24),

for B, t, nonnegative constants satisfying (5.25),then

0
v ()]s < (A + TalT))/¥* E SR SEE < (5.27)
iz H ~o''H : .
*
with ¥#(t_;T,6%) = 2(T/t_ + 122*%" ana &% given by (5.26).
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